Charge-transport properties of prototype molecular materials for organic electronics based on graphene nanoribbons.

نویسندگان

  • J C Sancho-García
  • A J Pérez-Jiménez
چکیده

The semiconducting properties of molecular material prototypes for graphene nanoribbons are rationalized by quantum-chemical calculations. The present contribution focuses on the hole transport properties of circum(oligo)acenes and compares the intrinsic efficiency of these materials for charge transport in the hopping regime with respect to the (oligo)acenes parent compounds. The results at the molecular scale predict significantly higher mobilities in circum(oligo)acenes mainly due to lower electron-phonon coupling. The importance of non-covalent intermolecular interactions is also highlighted; the description of the dimeric nanostructures expected in thin films devices needs the inclusion of dispersion forces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic properties and quantum transport in Graphene-based nanostructures

Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) represent a novel class of lowdimensional materials. All these graphene-based nanostructures are expected to display the extraordinary electronic, thermal and mechanical properties of graphene and are thus promising candidates for a wide range of nanoscience and nanotechnology applications. In this paper, the electronic and quantum transpo...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

Origin of multiple band gap values in single width nanoribbons

Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero...

متن کامل

Graphene nanoribbon blends with P3HT for organic electronics.

In organic field-effect transistors (OFETs) the electrical characteristics of polymeric semiconducting materials suffer from the presence of structural/morphological defects and grain boundaries as well as amorphous domains within the film, hindering an efficient transport of charges. To improve the percolation of charges we blend a regioregular poly(3-hexylthiophene) (P3HT) with newly designed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 11 15  شماره 

صفحات  -

تاریخ انتشار 2009